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a b s t r a c t

A novel lattice hydrodynamic model is put forward, which takes the effects of driver’s
memory and difference of optimal velocity into account on curved road. Linear stability
analysis for the novel model is discussed and the stability condition is deduced. Through
nonlinear analysis, the mKdV equation is deduced to explore the evolution of jams near
the vertex. The exact solution of the mKdV equation is also derived. The influence of
the above two factors on traffic stability are investigated by numerical examples. Both
numerical and analytical results demonstrate that memory effect and the difference of
optimal velocity on curved road can ease traffic jams efficiently.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In our modern society, traffic congestion is a serious problem which affects our daily life. As traffic jams become
more and more serious, this phenomenon has attached the attention of a large number of scholars and researchers,
and corresponding solutions of the problem are presented. In fact, the traffic environment is diversified and constantly
changing, so a series of traffic models [1–38] have been proposed continuously, which include the cellular automation
models [1–5], the car-following models [6–21], the gas kinetic models [22–24] and so on [25–38].

Bando [39] firstly put forward the car-following model, it was depended on the consideration that each vehicle would
adjust its own optimal velocity through the driving state of the vehicle in front. Then, Nagatani [40] presented the lattice
model which was constructed by discretizing the model of Kerner [41]. What is more, because the lattice hydrodynamic
model transforms the complex traffic system into the form of density wave for theoretical research, which makes it
more intuitive to study the traffic flow. Subsequently, a large number of extended effects are considered, such as the
backward looking effect [42–47], the effect of interruption [48,49], two-lane highway [50–56], optimal current difference
effect [57–64] etc.

Moreover, roads in traffic network are always complex and changeable. Taking curved roads as an example, because the
vehicles are subject to the centripetal force during driving on curved roads, more factors should be considered to reduce
traffic congestion compared with straight roads. Based on Nagatani’s model, Cao and Shi [65] put forward an improved
lattice model on curved road, which mainly studied the influence of friction coefficient and the curvature radius on traffic
flow. Because the driver’s driving environment became irregular, it caused the change of traffic flow. In 2016, Zhou and
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Fig. 1. The physical form of the model under curved road.

hi [66] put forward a lattice hydrodynamic model, which considered the curved road. It verified that the factors of radian,
riction coefficient and the curvature radius could stabilize the traffic flow. Jin et al. [67] carried out a lattice hydrodynamic
odel on curved road with passing. Actually, drivers are also a vital factor affecting traffic flow, to analyze the influence
f it, a series of related researches are carried out. In 2017, Kaur and Sharma [68] presented a novel model considering
river’s characteristics on a curved road. However, how driver’s memory affects the optimal velocity is seldom studied in
xisting models. With the consideration of it, we come up with a novel lattice hydrodynamic model considering memory
ffect and the difference of optimal velocity on a curved road.
The structure of this article is designed as below: In Section 2, the extended model is formulated by considering

emory effect and difference of optimal velocity on curved road. Section 3 deduced the stable condition for the new
odel. Then, the mKdV equation and its analytical solution are derived in Section 4. In Section 5, numerical simulations
re carried out. Section 6 draws the conclusion.

. The novel lattice hydrodynamic model

Nagatani [40] put forward the original lattice hydrodynamic model in 1998:

∂tρ + ∂xρv = 0 (1)

∂tρv = aρ0V (ρ(x + δ)) − aρv (2)

where ρ indicates density and v is velocity, ρ0 means the average density.
Based on dimensionless, Eqs. (1) and (2) can be rewritten as below:

∂tρjvj = aρ0V (ρj+1) − aρjvj (3)

∂tρj + ρ0(ρjvj − ρj−1vj−1) = 0 (4)

where V (·) is a monotonic decreasing function related to density on traffic system, which means the optimal velocity
function. And it can be showed [69]:

V
(
ρj (t)

)
=

Vmax

2

[
tanh

(
2
ρ0

−
ρj(t)
ρ2
0

−
1
ρc

)
+ tanh

(
1
ρc

)]
(5)

where ρc is the critical density.
Otherwise, Zhou and Shi [66] presented a modified model considering the bend effect. Fig. 1 shows the physical model

of the curved road. The distance function on the curved road could be expressed as y =

√
R2 − (x − R)2, where R is the

adius. l is the distance between the lattices j and j − 1, which can be expressed as below:

l =
∫ x

x−x0

√
1 + y′2dx =

x0
sin θj

(6)

where θj indicates the angle at site j.
Therefore, the original lattice hydrodynamic model can be expressed by considering the effect of curved road:

∂tρj +
ρ0

sin θj

(
ρjvj − ρj−1vj−1

)
= 0 (7)

∂tρjvj =
aρ0

sin θj
V
(
ρj+1

)
− aρjvj (8)

Also, the modified optimal velocity function changes on curved road [69], it can be showed as:

V
(
ρj (t)

)
= k

√
µgR

{
tanh

[
2

−
ρj (t)

2 −
1
]

+ tanh
(

1
)}

(9)

2 ρ0 ρ0 ρc ρc
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where Vmax =
√

µgR is the maximal velocity on curved road, k expresses a control over Vmax, µ is the friction coefficient
of the bend, g is gravitational acceleration.

As the traffic flow can be affected with many different factors, such as the factor of driver’s behavior. Because different
drivers will adjust the velocity of their vehicular according to their behavior. Therefore, drivers’ adjustment of expected
density is also changed. And, the value of optimal velocity will be changed by driver’s behavior. In the case of driver’s
memory effect and the difference of optimal velocity, the extended lattice hydrodynamic model on curved road could be
obtained:

∂tρj (t) vj (t) =
aρ0

sin θj
V
(
ρj+1 (t − ατ0)

)
− aρj (t) vj (t)

+
aρ0β

sin θj

[
V
(
ρj+2 (t − ατ0)

)
− V

(
ρj+1 (t − ατ0)

)]
(10)

∂tρj +
ρ0

sin θj

(
ρjvj − ρj−1vj−1

)
= 0 (11)

where ρ0
sin θj

is the modified average density compared with straight, which accounting for the angle of bend. α means the
arameter of driver’s memory effect on time. β is the corresponding coefficient. τ0 is driver’s reaction time for driver’s
emory.
Combing Eqs. (10) with (11) by eliminating the process of vj, we can determine the following model:

∂2
t ρj (t) + a∂tρj (t) +

aρ2
0

sin2 θj

[
V
(
ρj+1 (t − ατ0)

)
− V

(
ρj (t − ατ0)

)]
+

aρ2
0β

sin2 θj

[
V
(
ρj+2 (t − ατ0)

)
− 2V

(
ρj+1 (t − ατ0)

)
+ V

(
ρj (t − ατ0)

)]
= 0 (12)

3. Linear analysis

By applying linear analysis, the memory effect and difference of optimal velocity on curved road is investigated. The
uniform traffic flow means that the density and the optimal velocity are both constant values, which are chosen as ρ0
and V (ρ0), respectively. The steady-state solution for model (12) is:

ρj (t) = ρ0, vj (t) = V (ρ0) (13)

A small deviation yj (t) is imposed on the steady state solution, which is expressed as below:

ρj (t) = ρ0 + yj (t) (14)

Inserting (13) and (14) into (12), the following equation can be obtained:

∂2
t yj (t) + a∂tyj (t) +

aρ2
0

sin2 θj
V ′ (ρ0)

[
yj+1 (t) − yj (t) − ατ0

(
∂tyj+1 (t) − ∂tyj (t)

)]
+

aρ2
0β

sin2 θj
V ′ (ρ0)

[
yj+2 (t) − 2yj+1 (t) + yj (t) − ατ0

(
∂tyj+2 (t) − 2∂tyj+1 (t) + ∂tyj (t)

)]
= 0 (15)

where V ′ (ρ0) =
∂V (ρ)

∂ρ
|ρ = ρ0.

Determining the perturbation as yj = exp(ikj + zt) and inserting it into (15), which results:

z2 + az +
aρ2

0

sin2 θj
V ′ (ρ0)

[
eik − 1 − ατ0

(
zeik − z

)]
+

aρ2
0β

sin2 θj
V ′ (ρ0)

[
e2ik − 2eik + 1 − ατ0

(
ze2ik − 2zeik + z

)]
= 0 (16)

By taking z = z1(ik) + z2(ik)2 + · · · and substituting it into (16), the coefficients of (ik) and (ik)2 can be obtained:

z1 = −
ρ2
0V

′ (ρ0)

sin2 θj
(17)

z2 = −
ρ4
0V

′2 (ρ0)

a sin4 θj
−

ρ4
0V

′2 (ρ0) ατ0

2 sin4 θj
− (1 + 2β)

ρ2
0V

′ (ρ0)

2 sin2 θj
(18)

The small perturbation will not dissipate when z2 < 0. On the contrary, it will disappear after a long time when z2 > 0.
Therefore, the neutral stability condition is:

a = −
2ρ2

0V
′ (ρ0)

2 2 ′
(19)
(1 + 2β) sin θj + ατ0ρ0V (ρ0)
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Fig. 2. The neutral stability curves for α = 0.1, 0.4, 0.8 with β = 0, θ =
π
4 .

Fig. 3. The neutral stability curves for β = 0, 0.1, 0.2 with α = 0.4, θ =
π
4 .

Fig. 4. The neutral stability curves for θ =
π
4 , π

3 , 5π
12 with α = 0.4, β = 0.

Thus, the stable condition is:

a > −
2ρ2

0V
′ (ρ0)

2 2 ′
(20)
(1 + 2β) sin θj + ατ0ρ0V (ρ0)
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Fig. 5. The phase diagram of the model with α = 0, 0.2, 0.4, 0.8.

When α = 0 and β = 0, the stability criterion of the novel model is same as the model discussed by Zhou and Shi [66].
ccording to the (19), it is not difficult to find that effect of driver’s memory and the difference of optimal velocity on
urved road can help alleviate traffic congestion.
Figs. 2–4 show the neutral stability curves under different values of α, β and θj in the phase (ρ, a), respectively. In

ig. 2, we can clearly see the expansion of the stable region when we increase the value of α from 0.1 to 0.8. That is to say,
onsidering driver’s memory effect can effectively improve the overall stability of the traffic system. In Fig. 3, it shows the
ariation trend of the neutral stability curves when β = 0, 0.1, 0.2, respectively. From the phenomenon that the vertex

decreases obviously while increasing β , it can be judged that the difference of optimal velocity effect is beneficial for
traffic flow. There are the neutral stability curves in Fig. 4, which correspond to θj =

π
4 , π

3 , 5π
12 , respectively. Moreover, the

analysis of curved road becomes indistinguishable from straight ones for θj =
π
2 , and the stable region can be achieved

in the maximum state.

4. Nonlinear analysis

Nonlinear analysis is presented near (ρc, ac) to derive the mKdV equation. For 0 < ε ≪ 1, the slow variables X and Y
re taken as:

X = ε(j + bt), T = ε3t (21)

here b is a constant to be determined.
The expression for ρj (t) is showed in the equation:

ρj (t) = ρc + εR(X, T ) (22)

After substituting (21) and (22) into (12), the method of Taylor is used to expand them to the fifth power of ε, and the
expanded equation is as follows:

ε2k ∂ R + ε3k ∂2R + ε4 (∂ R + k ∂3R + k ∂ R3)
+ ε5 (k ∂ ∂ R + k ∂2R3

+ k ∂4R
)

= 0 (23)
1 X 2 X T 3 X 4 X 5 X T 6 X 7 X
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Fig. 6. The density profile at t = 10 300 s corresponds to Fig. 5.

Table 1 shows the specific values of ki (i = 1, 2, 3 . . . , 7). where V ′
=

∂V (ρ)

∂ρ
|ρ = ρc and V ′′′

=
∂3V (ρ)

∂ρ3 |ρ = ρc . The
value of ac near (ρc, ac) is as:

ac =
(
1 + ε2) a (24)

In terms of b = −
ρ2
0V

′

sin2 θj
, the simplified equation is described as:

ε4(−g1∂3
XR + g2∂XR3

+ ∂TR) + ε5(g4∂4
XR + g5∂3

XR
3
+ g3∂2

XR) = 0 (25)

here the coefficients gi (1, 2, . . . , 5) are given in Table 2.
Let

T =
1
g1

T ′, R =

√
g1
g2

R′ (26)

Substituting Eq. (26) into Eq. (25), the mKdV equation with O(ε) is derived as below:

∂T ′R′
= ∂3

XR
′
− ∂XR′3

+ ε

[
g3
g1

∂2
XR

′
+

g4
g1

∂4
XR

′
+

g5
g2

∂2
XR

′3
]

(27)

So, the (27) could be simplified in the following form:

∂T ′R′
= ∂3

XR
′
− ∂XR′3

+ εM
[
R′
]

(28)

here M
[
R′
]

=
g3
g1

∂2
XR

′
+

g4
g1

∂4
XR

′
+

g5
g2

∂2
XR

′3.
Ignoring O(ε), the kink–antikink solution of Eq. (28) is obtained:

R′

0

(
X, T ′

)
=

√
c tanh

(√
c
2

(
X − cT ′

))
(29)
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Table 1
The specific values of ki for the model.
k1 k2

b +
ρ2
c V

′

sin2 θj

b2
a +

ρ2
c V

′

2 sin2 θj
(1 + 2β − 2ατ0b)

k3 k4
ρ2
c V

′′′(1+6β−9bατ0)

6 sin2 θj

ρ2
c V

′′′

6 sin2 θj

k5 k6
2b
a −

ρ2
c V

′bατ0
sin2 θj

ρ2
c V

′(1+14β+20bατ0)

24 sin2 θj

k7
ρ2
c V

′′′(1+2β)

12 sin2 θj

Table 2
The specific values of gi for the model.
g1 g2 g3

−
ρ2
c V

′(1+6β−9bατ0)

6 sin2 θj

ρ2
c V

′′′

6 sin2 θj

ατ0ρ4
c V

′2

24 sin4 θj

g4 g5
ρ2
c V

′(1+14β+20bατ0)

24 sin2 θj

ρ2
c V

′′′(1+2β)

12 sin2 θj

Fig. 7. The phase diagram of the model with β = 0, 0.05, 0.1, 0.2.

Let R′(X, T ′) = R′

0(X, T ′) + εR′

1(X, T ′), and the following solvability condition is applied to get the value of c:

(
R′

0,M
[
R′

0

])
≡

∫
+∞

dX ′R′

0M
[
R′

0

]
= 0 (30)
−∞



8 Q. Wang, R. Cheng and H. Ge / Physica A 559 (2020) 125023

e

Fig. 8. The density profile at t = 10 300 s corresponds to Fig. 7.

After solving the integral equation of (30), and M
[
R′

0

]
= M [R] here. The value of c is evaluated as:

c =
5g2g3

2g2g4 − 3g1g5
(31)

Whereafter, the soliton solution of the density can be rewritten when we substitute the variables into the original
quation (22):

ρj (t) = ρc +

√
g1c
g2

(ac
a

− 1
)

× tanh
√

c
2

(ac
a

− 1
)

×

[
j + (1 − cg1)

(ac
a

− 1
)
t
]

(32)

In addition, the amplitude A of the density is:

A =

√
g1c
g2

(ac
a

− 1
)

(33)

With the nonlinear analysis above, the density wave of the mKdV equation changes with α, β and θj, which proves
the effect of the new model on traffic system. In other words, when considering driver’s memory effect, the difference of
optimal velocity and curved road, the phenomenon of traffic jams can develop in a positive direction.

5. Numerical simulation

Numerical simulations are carried out to explore the impact of memory effect and difference of optimal velocity on
traffic stability. The proposed novel lattice model of Eq. (12) is discretized through the difference scheme:

ρj (t + 2∆t) − 2ρj (t + ∆t) + ρj (t) + a∆t
[
ρj (t + ∆t) − ρj (t)

]
+

aρ2
0∆t2
2

[
V
(
ρj+1 (t − ατ0)

)
− V

(
ρj (t − ατ0)

)]
+

sin θj
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Fig. 9. The phase diagram of the model with θj =
π
6 , π

3 , 5π
12 , π

2 .

aρ2
0β∆t2

sin2 θj

[
V
(
ρj+2 (t − ατ0)

)
− 2V

(
ρj+1 (t − ατ0)

)
+ V

(
ρj (t − ατ0)

)]
= 0 (34)

We can get the initial conditions:

ρj (1) = ρj(0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ0, j ̸=

N
2

,
N
2

+ 1,

ρ0 − 0.05, j =
N
2

,

ρ0 + 0.05, j =
N
2

.

(35)

where N = 100, ρ0 = ρc = 0.5, µ = 0.3, g = 10, τ0 = 0.01, R = 20, k = 0.14, a = 2.4.
Fig. 5 shows the three-dimensional structure of the density wave curves, which are obtained for different α when

β = 0, θj = π/3 by numerical simulation. From Fig. 5(a), the density curve fluctuates most strongly for α = 0, and
traffic flow is disorganized. When we increase the value of α (= 0.4, 0.6, 0.8), the fluctuation of density curve gradually
becomes gentle with the increase of α. Therefore, it is obvious that memory effect plays a positive role in traffic flow.

In Fig. 6, the profile of density at time t = 10 300 s is indicated. When the value of α increases from 0 to 0.8, the
amplitude of density waves decreases. It also demonstrated that memory effect can reduce traffic congestions.

Fig. 7 indicates the traffic patterns with different β when α = 0.1, θj = π/4. For β = 0, 0.05, 0.1, 0.2, the time
evolution of density is exhibited, respectively. In patterns (a), (b) and (c), the kink–antikink density waves are showed by
the lead of the initial disturbance, the change of the amplitude disturbance is drastic, it means traffic jams occur. Actually,
the curve of amplitude disturbance evolves into a linear state in pattern (d). This means that under this condition, the
parameter value reaches the stable condition, and the traffic flow will gradually become stable. We can determine that
the difference of optimal velocity effect on curved road is significant to stabilize traffic flow.

Fig. 8 shows the density profile of the two-dimensional state at t = 10 300 s, which corresponds to Fig. 7. From the
process of graphs evolution, we can see the specific change of a small disturbance on density. When increasing the value
of β , the amplitudes of the density decreased. That is to say, traffic jams could be alleviated with the idea of difference
of optimal velocity on curved road.
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T
d

Fig. 10. The density profile at t = 10 300 s corresponds to Fig. 9.

Fig. 9 shows the traffic patterns with different θj for α = 0.8, β = 0, the kink–antikink density waves are exhibited.
he conditions given in (a) and (b) do not satisfy the steady-state requirements, the small amplitude disturbance will
evelop into a congestion flow. From patterns (c) and (d), the density curves reach a stable state when θ =

5π
12 and π

2 ,
it shows that under this condition, the traffic flow has met the requirement of its steady-state critical value. The results
convey the message that within the value of range, with the increase of the angle of the curve, the phenomenon of traffic
congestion continues to be improved until it reaches a stable state. It also means that the consideration of the angle of
the curve has practical significance for traffic flow.

In Fig. 10, it shows the density curves variation in two-dimensional form at t = 10 300 s. The larger the value of θj, the
smaller the amplitude of density and finally reaches a stable state. The phenomenon of traffic jams could be alleviated
when the factor of angle of curved road is taken into account.

6. Conclusion

A novel lattice hydrodynamic model which takes memory effect and the difference of optimal velocity on curved road
into account is presented. Through linear analysis, the stability condition is obtained. Near the vertex of neutral stability
curve, the mKdV equation is derived by applying nonlinear analysis. Numerical examples are performed to explored how
these two factors infect traffic flow stability. Analytical results coincide well with numerical results. Both numerical and
exact results demonstrate that memory effect and difference of optimal velocity play positive role in traffic stabilization.
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